Sistem Monitoring dan Estimasi Konsumsi Listrik untuk Rumah Tangga Berbasis IoT dengan Antarmuka React
DOI:
https://doi.org/10.24114/cess.v10i2.66675Keywords:
Internet of Thing (IoT), Monitoring Energi, Smart Home, React, Efisiensi EnergiAbstract
Konsumsi energi listrik rumah tangga di Indonesia terus meningkat, mencapai 1.337 kWh per kapita pada 2023, naik 13,98% dari tahun sebelumnya. Penelitian ini mengembangkan sistem monitoring konsumsi listrik berbasis Internet of Things (IoT) menggunakan sensor PZEM-004T dan mikrokontroler ESP32, yang mampu mengukur tegangan, arus, daya aktif, dan energi kumulatif secara akurat. Backend dibangun dengan Node.js dan database real-time, sementara antarmuka frontend menggunakan React.js untuk menampilkan visualisasi data yang interaktif dan responsif. Dashboard menampilkan informasi penting seperti estimasi biaya (Rp14.673), konsumsi real-time (34,90W), konsumsi saat ini (10 kWh), konsumsi kumulatif (1450,500 kWh), serta pemantauan beban peralatan rumah tangga. Sistem menunjukkan status konsumsi “EFISIEN” dan berhasil meningkatkan kesadaran pengguna, terbukti dari pengurangan konsumsi energi rata-rata sebesar 16,8%. Akurasi sensor mencapai 98,5% untuk daya dan 97,2% untuk energi. Survei menunjukkan tingkat kepuasan pengguna sebesar 89,1%, dengan antarmuka dinilai mudah digunakan (4,4/5,0). Hasil penelitian membuktikan bahwa integrasi sensor PZEM dengan teknologi IoT dan React mampu menghasilkan solusi monitoring energi yang akurat, real-time, dan mendukung pengelolaan energi rumah tangga yang efisien dan berkelanjutan.References
[1] Universitas Gadjah Mada, "UGM Expert Reveals Factors Behind Low Electricity Consumption in Indonesia," Oct. 2024. [Online]. Available: https://ugm.ac.id/en/news/ugm-expert-reveals-factors-behind-low-electricity-consumption-in-indonesia/
[2] Ali Raza, Dr & Jingzhao, Li & Ghadi, Yazeed & Adnan, Muhammad & Ali, Mansoor (2024). Smart home energy management systems: Research challenges and survey. Alexandria Engineering Journal. 92. 117-170. DOI:10.1016/j.aej.2024.02.033
[3] P. Mukilan ,M. Balasubramanian, R. Narayanamoorthi, S. Mohammad, A. Yasser (2024). "IoT—A Promising Solution to Energy Management in Smart Buildings: A Systematic Review, Applications, Barriers, and Future Scope," Buildings, vol. 14, no. 11, p. 3446, 2024. https://doi.org/10.3390/buildings14113446
[4] G, Karuna & Ediga, Poornima & S, Akshatha & P, Anupama & T, Sanjana & Mittal, Aman & Rajvanshi, Saurabh & Habelalmateen, Mohammed. (2024). Smart energy management: real-time prediction and optimization for IoT-enabled smart homes. Cogent Engineering. 11. http://dx.doi.org/10.1080/23311916.2024.2390674
[5] Rehman, Ubaid Ur & Faria, Pedro & Gomes, Luis & Vale, Zita. (2025). Future of Energy Management Models in Smart Homes: A Systematic Literature Review of Research Trends, Gaps, and Future Directions. Process Integration and Optimization for Sustainability. 1-30. http://dx.doi.org/10.1007/s41660-025-00506-x
[6] Ampatzidis, Konstantinos & Oikonomou, Dimitrios & Kitsos, Paris & Rigou, Maria. (2019). A Smart Home Energy Management System Based on Internet-of-Things. 1-4. http://dx.doi.org/10.1109/PACET48583.2019.8956276
[7] Chen, Yongbao & Xu, Peng & Gu, Jiefan & Schmidt, Ferdinand & Li, Weilin. (2018). Measures to improve energy demand flexibility in buildings for demand response (DR): A review. Energy and Buildings. 177. http://dx.doi.org/10.1016/j.enbuild.2018.08.003
[8] Anvari-Moghaddam, Amjad & Monsef, Hassan & Rahimi-Kian, Ashkan. (2015). Optimal Smart Home Energy Management Considering Energy Saving and a Comfortable Lifestyle. IEEE Transactions on Smart Grid. 6. 324-332.
[9] K. Zhou, C. Fu, and S. Yang (2015)."Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, vol. 56, pp. 215-225, 2016. https://doi.org/10.1016/j.rser.2015.11.050
[10] Minoli, Daniel & Sohraby, Kazem & Occhiogrosso, Benedict. (2017). IoT Considerations, Requirements, and Architectures for Smart Buildings – Energy Optimization and Next Generation Building Management Systems. IEEE Internet of Things Journal. PP. 1-1. http://dx.doi.org/10.1109/JIOT.2017.2647881
[11] P. Siano, "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, vol. 30, pp. 461-478, 2014. http://dx.doi.org/10.1016/j.rser.2013.10.022
[12] Byun, Jinsung & Hong, Insung & Park, Sehyun. (2012). Intelligent Cloud Home Energy Management System Using Household Appliance Priority Based Scheduling Based on Prediction of Renewable Energy Capability. Consumer Electronics, IEEE Transactions on. 58. 1194-1201. http://dx.doi.org/10.1109/TCE.2012.6414985
[13] Risteska Stojkoska, Biljana & Trivodaliev, Kire. (2017). A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production. 140. 1454–1464. http://dx.doi.org/10.1016/j.jclepro.2016.10.006
[14] Al-Fuqaha, Ala & Guizani, Mohsen & Mohammadi, Mehdi & Aledhari, Mohammed & Ayyash, Moussa. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols and Applications. IEEE Communications Surveys & Tutorials. 17. Fourthquarter 2015. http://dx.doi.org/10.1109/COMST.2015.2444095
[15] Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, "Konsumsi Listrik Masyarakat Meningkat, Tahun 2023 Capai 1.285 kWh/Kapita," 2024. [Online]. Available: https://www.esdm.go.id/id/media-center/arsip-berita/konsumsi-listrik-masyarakat-meningkat-tahun-2023-capai-1285-kwh-kapita
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 CESS (Journal of Computer Engineering, System and Science)

This work is licensed under a Creative Commons Attribution 4.0 International License.