Optimization of pretreatment in delignification of hyacinth biomass for ethanol production
Abstract
Water hyacinth (Eichhornia crassipes) is one of the potential feedstocks for bioethanol production due to their higher cellulose content. It needs the optimization of pretreatment to remove lignin and release cellulose and hemicellulose from lignocellulosic complex. Pretreatment was done using sulfuric acid, sodium hydroxide, and calcium hypochlorite as soaking agents. Experiment was carried out at 121 °C for 15 minutes. Pretreatment with 1% sulfuric acid decreased lignin by 6.74%, 4.0% sodium hydroxide reduced lignin content by 11.23%, whereas pretreatment with 0.3% calcium hypochlorite removed lignin by 8.30% from original lignin content lignocellulosic substrate. Therefore, sodium hydroxide pretreatment showed highest efficacy in delignification processes, followed by calcium hypochlorite, and sulfuric acid pretreatments.
Keywords: Lignin reduction; Lignocellulose; Pretreatment; Water hyacinth
Full Text:
PDFReferences
Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
Asgher, M., Ahmad, Z., & Iqbal, H. M. (2013). Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products, 44, 488– 495. https://doi.org/10.1016/j.indcrop.2012.10.005
Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86, 2273–2282. https://doi.org/10.1016/j.apenergy.2009.03.015
Balat, M., Balat, H., & Oz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551-573. https://doi.org/10.1016/j.pecs.2007.11.001
Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T. N., Chew, K. W., Culaba, A., & Chang, J.-S. (2020). Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 24, 1115-1127. https://doi.org/10.18331/BRJ2020.7.1.4
El-Zawawy, W. K., Ibrahim, M. M., Abdel-Fattah, Y. R., Soliman, N. A., & Mahmoud, M. M. (2011). Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers, 84, 865–871. https://doi.org/10.1016/j.carbpol.2010.12.022
Fuertez-Córdoba, J., Acosta-Pavas, J., & Ruiz-Colorado, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. DYNA, 88(218), 168-177. https://doi.org/10.7440/res64.2018.03
Ganguly, A., Chatterjeea, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth – A review. Renew. Sustain. Energy Rev, 16, 966–972. https://doi.org/10.1016/j.rser.2011.09.018
García-Cubero, M., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 100, 1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012
Guragain, Y. N., Coninck, J. D., Husson, F., Durand, A., & Rakshit, S. (2011). Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology, 106, 4416–4424. https://doi.org/10.1016/j.biortech.2010.11.125
Harun, R., & Danquah, M. K. (2011). Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 46, 304-309. https://doi.org/10.1016/j.procbio.2010.08.027
Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18. https://doi.org/10.1016/j.biortech.2008.05.027
Huang, H. J., Ramaswamy, S., Al-Dajani, W., Tschirner, U., & Cairncross, R. A. (2009). Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass and Bioenergy, 33(2), 234-246. https://doi.org/10.1016/j.biombioe.2008.05.007
Kim, I., Lee, B., Park, J.-Y., Choi, S.-A., & Han, J.-I. (2014). Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydrate Polymers, 99, 563– 567. https://doi.org/10.1016/j.carbpol.2013.08.092
Li, T., & Takkellapati, S. (2018). The current and emerging sources of technical lignins and their applications. Biofuels, Bioprod. Bioref, 1-32. https://doi.org/10.1002/bbb.1913
Limayema, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
Liu, C., & Wyman, C. (2003). The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover. Ind. Eng. Chem. Res, 43(11), 2781–2788. https://doi.org/10.1021/ie030754x
Quintero, J. A., Rincón, L. E., & Cardona, C. A. (2011). Production of Bioethanol from Agroindustrial Residues as Feedstocks. In Biofuels: Alternative Feedstocks and Conversion Processes. Manizales, Colombia: Elsevier Inc. https://doi.org/10.1016/B978-0-12-385099-7.00011-5
Saricks, C., Santini, D., & Wang, M. (1999). Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne National Laboratory, Center for Transportation Research, Energy Systems Division. Argonne, Illinois, USA: Argonne National Laboratory. https://doi.org/10.2172/4742
Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol Production from Agricultural Waste: An Overview. Renewable Energy, 26, 19-27. https://doi.org/10.1016/j.renene.2011.06.045
Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandeay, A. (2011). Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 102(23), 10915-10921. https://doi.org/10.1016/j.biortech.2011.09.066
Singh, A., & Bishnoi, N. R. (2012). Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, 37, 334– 341. https://doi.org/10.1016/j.indcrop.2011.12.033
Singh, A., & Bishnoi, N. R. (2013). Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Industrial Crops and Products, 44, 283– 289. https://doi.org/10.1016/j.indcrop.2012.11.026
SNI 0494. (2008). Pulp - Cara uji bilangan kappa. Jakarta: Badan Standardisasi Nasional.
Suhardi, V. S., Prasai, B., Samaha, D., & Boopathy, R. (2013). Evaluation of pretreatment methods for lignocellulosic ethanol production from energy cane variety L 79-1002. International Biodeterioration & Biodegradation, 1-5. https://doi.org/10.1016/j.ibiod.2013.03.021
Tocco, D., Carucci, C., Monduzzi, M., Salis, A., & Sanjust, E. (2021). Recent developments in the delignification and exploitation of grass lignocellulosic biomass. ACS Suitainable Chem. Eng, 9(6), 2412-2432. https://dx.doi.org/10.1021/acssuschemeng.0c07266
Zheng, Y., Lee, C., Yu, C., Cheng, Y. S., Zhang, R., Jenkins, B. M., & Gheynst, J. V. (2013). Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Applied Energy, 105, 1-7. https://doi.org/10.1016/j.apenergy.2012.11.070
Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface for evaluating wood size-reduction and pretreatment efficiencies. Chemical Engineering Science, 64, 474–485. https://doi.org/10.1016/j.ces.2008.09.026
DOI: https://doi.org/10.24114/jpkim.v15i1.43652
Article Metrics
Abstract view : 241 timesPDF - 153 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Effendi Nawawi, Zainal Fanani, Fakhili Gulo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id
Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.
This work is licensed under a Creative Commons Attribution 4.0 International License.